翻訳と辞書
Words near each other
・ Próspero París
・ Próspero Penados del Barrio
・ Prószków
・ Próżna Street
・ Pröbsten
・ Prödel
・ Pröll
・ Pröller
・ Prösels Castle
・ Prötzel
・ Prøvestenen
・ Prúdy
・ Prüfening Abbey
・ Prüfening dedicatory inscription
・ Prüfer domain
Prüfer group
・ Prüfer manifold
・ Prüfer rank
・ Prüfer sequence
・ Prüfer theorems
・ Prüfstand VII
・ Prügy
・ Prüll Charterhouse
・ Prüm
・ Prüm (disambiguation)
・ Prüm (river)
・ Prüm (Verbandsgemeinde)
・ Prüm Abbey
・ Prüm Convention
・ Prüm Ministry


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Prüfer group : ウィキペディア英語版
Prüfer group

In mathematics, specifically in group theory, the Prüfer ''p''-group or the ''p''-quasicyclic group or ''p''-group, Z(''p''), for a prime number ''p'' is the unique ''p''-group in which every element has ''p'' different ''p''-th roots.
The Prüfer ''p''-groups are countable abelian groups which are important in the classification of infinite abelian groups: they (along with the group of rational numbers) form the smallest building blocks of all divisible groups.
The groups are named after Heinz Prüfer, a German mathematician of the early 20th century.
==Constructions of Z(''p'')==
The Prüfer ''p''-group may be identified with the subgroup of the circle group, U(1), consisting of all ''p''''n''-th roots of unity as ''n'' ranges over all non-negative integers:
:\mathbf(p^\infty)=\^+\}.\;
The group operation here is the multiplication of complex numbers.
Alternatively and equivalently, the Prüfer ''p''-group may be defined as the Sylow p-subgroup of the quotient group Q''/''Z, consisting of those elements whose order is a power of ''p'':
:\mathbf(p^\infty) = \mathbf()/\mathbf
(where Z() denotes the group of all rational numbers whose denominator is a power of ''p'', using addition of rational numbers as group operation).
We can also write
:\mathbf(p^\infty)=\mathbf_p/\mathbf_p
where Q''p'' denotes the additive group of ''p''-adic numbers and Z''p'' is the subgroup of ''p''-adic integers.
There is a presentation
:\mathbf(p^\infty) = \langle\, g_1, g_2, g_3, \ldots \mid g_1^p = 1, g_2^p = g_1, g_3^p = g_2, \dots\,\rangle.
Here, the group operation in Z(''p'') is written as multiplication.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Prüfer group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.